the mean coordinate bond dissociation energies given in Table IV. For the tetrahedral complexes of cobalt, zinc, and cadmium the bond strengths are of the same order as previously found (2) for other tetrahedral sulfur-bonded complexes. The highest value, for cobalt, may reflect the additional ligand field stabilization present in this species. Although the silver complex has a distorted structure, the bond energy is close to that of the other tetrahedral complexes. The mercury complex displays considerably weaker bonding. Direct comparison is probably unwise, however, owing to the uncertainty in the value of the enthalpy of sublimation and to the unusual structure of the complex.

## Acknowledgment

The author thanks Professor C.T. Mortimer of the University of Keele for providing facilities for part of the work.

Registry No. tu, 62-56-6; [Cotu<sub>2</sub>Cl<sub>2</sub>], 14240-49-4; [Zntu<sub>2</sub>Cl<sub>2</sub>], 14239-75-9; [Cdtu<sub>2</sub>Cl<sub>2</sub>], 15021-53-1; [Agtu<sub>2</sub>Cl], 15631-39-7; [Hgtu<sub>2</sub>Cl<sub>2</sub>], 15020-97-0; Co, 7440-48-4; Zn, 7440-66-6; Cd, 7440-43-9; Ag, 7440-22-4; Hg, 7439-97-6.

### **Literature Cited**

- Ashcroft, S. J. J. Chem. Soc. A 1970, 1020-4.
   Ashcroft, S. J. J. Chem. Thermodyn. 1971, 3, 853-9.
- (3) Rosenheim, A.; Meyer, V. J. Z. Anorg. Chem. 1906, 49, 13-27.

- 4) Aucken, I. Inorg. Synth. 1960, 6, 26-30.
- (5) Nardelli, M.; Cavalca, L.; Braibanti, A. Gazz. Chim. Ital. 1957, 87, 907 - 11.
- (6) Cotton, F. A.; Faut, O. D.; Mague, J. T. Inorg. Chem. 1964, 3, 17-21.
- Wadsö, I. Sci. Tools 1966, 13, 33-9.
- (8) IUPAC Commission on Physicochemical Measurements and Standards, Pure Appl. Chem. 1974, 40, 433-4
- (9) Handbook of Chemistry and Physics, 53rd ed.; Chemical Rubber Co.: Cleveland, OH, 1973.
- (10) Freeman, R. D. J. Chem. Eng. Data 1984, 29, 105-11. (11)
- Ashcroft, S. J. Thermochim. Acta 1971, 2, 512
- (12) Flint, C. D.; Goodgame, M. J. Chem. Soc. A 1966, 744–7.
   (13) Mackle, H.; O'Hare, P. A. G. Trans. Faraday Soc. 1963, 59, 309–15.
- (14) Westrum, E. F.; Chang, E. T. Collog. Int. CNRS, Paris 1967, 156, 163-73.
- (15) Kubaschewski, O.; Alcock, C. B. Metallurgical Thermochemistry, 5th ed.: Pergamon: Oxford, U.K., 1979.
- (16) Cox, J. D.; Pilcher, G. Thermochemistry of Organic and Organometallic Compounds; Academic: London, 1970.
- (17)National Bureau of Standards, Technical Note 270-3.4, Washington, DC, 1968.
- (18) Dominiano, P.; Tiripicchio, A. Cryst. Struct. Commun. 1972, 1, 107-10.
- (19) Kunchur, N. R.; and Truter, M. R. J. Chem. Soc. 1958, 3478-84. (20) Nardelli, M.; Cavalca, L.; Braibanti, A. Gazz. Chim. Ital. 1957, 87,
- 137 45
- (21) Cheung, K. K.; McEwan, R. S.; Sim, G. A. Nature 1965, 205, 383-4.
   (22) Brotherton, P. D.; Healy, P. C.; Raston, C. L.; White, A. H. J. Chem. Soc . Dalton Trans . 1973, 334-6.
- Vizzini, E. A.; Amma, E. L. J. Am. Chem. Soc. 1966, 88, 2872-3.
- Ashcroft, S. J.; Beech, G. Inorganic Thermodynamics; Van Nostrand: (24) London, 1973; p 18.

Received for review August 18, 1987. Accepted January 23, 1988.

# Vapor Pressures of Methyl, Ethyl, *n*-Propyl, Isobutyl, and *n*-Butyl **Benzoates at Reduced Pressures**

#### Hirotake Katayama

Department of Mechanical Engineering, College of Engineering, Hosei University, Koganei, Tokyo, Japan

The vapor pressures of methyl, ethyl, n-propyl, isobutyl, and *n*-butyl benzoates were measured over the pressure range of 0.50-30 kPa. The results were examined by fitting with a Chebyshev polynomial and with Miller, Florst-Kalkwarf, and Antoine equations. The percent root mean square deviations of pressures of these five benzoates for the Miller fit were 0.30, 0.30, 0.25, 0.16, and 0.24, respectively. The enthalples of vaporization of the benzoates were also obtained by using a Chebyshev polynomial with mean errors of  $\pm 0.2$  kJ/mol.

## **Experimental Section**

As few experimental data for alkyl benzoates have been published, the vapor pressure of five benzoates were measured at 0.5-30 kPa.

All the special grade materials from Tokyo Kasei Co., Ltd., were used without further purification. The purities of the materials were determined to exceed 99% by a gas chromatographic analysis with a 3 mm i.d. and 2 m length column packed with 5% silicone (SE52) on celite. Table I shows the densities and refractive indexes compared with the literature values (1-5).

The experimental apparatus and procedure were already described elsewhere (6). The Multi-Range Model 157/100 pressure standard with a spiral quartz Bourdon tube attached a calibration table from Texas Instruments Inc. was used as a pressure gauge. As the gauge was essentially a difference meter, a McLeod gauge was used in determining zero pressure (less than 0.001 kPa) as a standard pressure. The accuracies of pressures were  $\pm 0.002$  kPa for the 10-30 kPa range and ±0.001 kPa for 0.50-10 kPa range. Three mercury thermometers with immersion lines marked at the 18-cm points from their bulb ends, i.e., sets of 40-100, 100-150, and 150-200 °C graduations, were used for temperature measurements. They were calibrated in 5-°C intervals with accuracies of ±0.04 K by Watanabe Keiki Seisakusho Co. Ltd., Tokyo. The intermediate temperatures in the intervals were interpolated.

#### **Results and Discussion**

The experimental results are presented in Table II. The results are also plotted in Figure 1 including a comparison with values from the literature (2, 7-13).

The Chebyshev polynomial (14) and Miller (15), Frost-Kalkwarf (16), and Antoine equations were used to fit the results. The Chebyshev polynomial is

t in 
$$P = a_0/2 + \sum a E_i(x)$$

where t = T - 273.15 K,  $E_1(x) = x$ ,  $E_2(x) = 2x^2 - 1$ ,  $E_i(x)$ =  $2xE_{i-1}(x) - E_{i-2}(x)$ , and x is a function of temperature defined as

$$x = \frac{2T - (T_{\max} + T_{\min})}{T_{\max} - T_{\min}}$$

where  $T_{max}$  and  $T_{min}$  are the maximum and minimum temperatures of the related substances. The polynomial with four

| Table I | Physical    | <b>Properties of Five Benzoates</b> |  |
|---------|-------------|-------------------------------------|--|
| тяріет. | P II VSICHI | Froberties of five Delizoates       |  |

|                   | density, g/cm <sup>3</sup> |        |                  | $n_{\mathrm{D}}{}^{a}$ |         |                     |
|-------------------|----------------------------|--------|------------------|------------------------|---------|---------------------|
|                   | temp, K                    | exptl  | lit.             | temp, K                | exptl   | lit.                |
| methyl benzoate   | 298.15                     | 1.0833 | $1.0832^{b}$     | 293.15                 | 1.51873 | 1.51701°            |
| ethyl benzoate    | 298.15                     | 1.0421 | $1.04214^{d}$    | 293.15                 | 1.50672 | $1.50519^{\circ}$   |
| n-propyl benzoate | 293.15                     | 1.0227 | $1.0232^{\circ}$ | 293.15                 | 1.50087 | $1.50031^{\circ}$   |
| isobutyl benzoate | 293.15                     | 0.9957 | 0.9989°          | 293.15                 | 1.49451 | 1.4934 <sup>e</sup> |
| n-butyl benzoate  | 293.15                     | 1.0056 | $1.0057^{f}$     | 293.15                 | 1.49782 | $1.49720^{\circ}$   |

<sup>a</sup>Refractive index. <sup>b</sup>Reference 1. <sup>c</sup>Reference 2. <sup>d</sup>Reference 3. <sup>e</sup>Reference 4. <sup>f</sup>Reference 5.

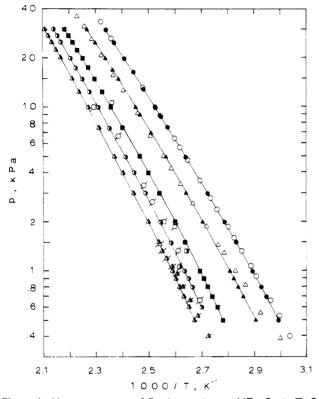



Figure 1. Vapor pressures of five benzoates vs 1/T: •, ▲, ■, •,  $\Delta$ , values from this work for methyl, ethyl, *n*-propyl, isobutyl, and n-butyl benzoates respectively; methyl benzoate (O, Kahlbaum (1898) (7)); ethyl benzoate ( $\Delta$ , Hieber and Reindl (1940) (8)); n-propyl ben-(7)), entry behavious (2), hields and remain (1940) (3)), r-joby set 20 at (10, Matsuno and Han (1983) (9);  $\prod$ , Price and Belanger (1954) (10);  $\square$ , Negoro and Saheki (1956) (11)); isobutyl benzoate ( $\emptyset$ , Kahlbaum (1884) (12);  $\emptyset$ , Matsuno and Han (1933) (9)); n-butyl benzoate ( $\Delta$ , Hickman and Weyerts (1930) (13);  $\lambda$ , Vogel (1948) (2)).

parameters is equivalent to the Miller equation.

The Miller equation is

$$\ln P = A_m + B_m/t + C_m t + D_m t^2$$

or

$$t \ln P = A_{\rm m}t + B_{\rm m} + C_{\rm m}t^2 + D_{\rm m}t^3$$

The Frost-Kalkwarf equation is

$$\ln P = A_t + B_t/t + C_t \ln t + D_t P/t^2$$

or

$$t \ln P = A_t t + B_t + C_t \ln t + D_t P/t$$

The Antoine equation is

$$\ln P = A_a - B_a / (t + C_a)$$

or

$$t \ln P = A_a t + D_a - C_a \ln P$$

where  $D_a = A_a C_a - B_a$ . All the constants of the expression mentioned above were determined by least-squares fits of t in P.

| Table II. | Vapor | Pressures | of Five | Benzoates | (from |
|-----------|-------|-----------|---------|-----------|-------|
| Experime  | nt)   |           |         |           |       |

| Experimen | nt)            |               |          |        |               |
|-----------|----------------|---------------|----------|--------|---------------|
|           |                | $\Delta H,^a$ |          |        | $\Delta H,^a$ |
| Т, К      | P, kPa         | kJ/mol        | T, K     | P, kPa | kJ/mol        |
|           |                | Methyl I      | Benzoate |        |               |
| 428.33    | 30.000         | 46.7          | 389.16   | 7.604  | 49.9          |
| 422.70    | 25.000         | 47.3          | 378.99   | 5.000  | 50.7          |
| 415.77    | 20.000         | 47.9          | 367.42   | 3.000  | 51.7          |
| 410.09    | 16.499         | 48.3          | 358.86   | 2.000  | 52.7          |
| 403.47    | 13.000         | 48.9          | 353.18   | 1.500  | 53.6          |
| 396.41    | 10.113         | 49.3          | 345.47   | 1.000  | 55.0          |
| 396.19    | 10.000         | 49.3          | 341.66   | 0.800  | 56.0          |
| 393.15    | 9.000          | 49.5          | 339.26   | 0.300  | 56.6          |
| 393.13    | 9.000<br>8.851 | 49.6          | 333.86   | 0.500  | 58.7          |
| 352.57    | 0.001          | 45.0          | 000.00   | 0.000  | 00.7          |
|           |                | Ethyl B       |          |        |               |
| 440.55    | 30.000         | 48.7          | 390.05   | 5.000  | 52.6          |
| 434.58    | 25.000         | 49.2          | 378.49   | 3.000  | 53.8          |
| 427.68    | 20.000         | 49.8          | 369.73   | 2.000  | 54.8          |
| 422.87    | 17.000         | 50.2          | 356.00   | 1.000  | 57.0          |
| 419.13    | 15.000         | 50.5          | 354.25   | 0.900  | 57.5          |
| 407.82    | 10.000         | 51.3          | 352.14   | 0.800  | 58.0          |
| 404.95    | 9.000          | 51.5          | 349.66   | 0.700  | 58.6          |
| 398.47    | 7.000          | 52.0          | 344.05   | 0.500  | 60.4          |
|           |                | n-Propyl      | Benzoate |        |               |
| 457.80    | 30.000         | 51.1          | 405.58   | 5.000  | 55.3          |
| 454.49    | 27.500         | 51.4          | 400.15   | 4.000  | 55.9          |
| 451.28    | 25.000         | 51.7          | 393.51   | 3.000  | 56.9          |
| 447.92    | 22.500         | 52.1          | 384.67   | 2.000  | 58.6          |
| 444.20    | 20.000         | 52.4          | 378.89   | 1.500  | 60.2          |
| 440.02    | 17.500         | 52.7          | 371.04   | 1.000  | 62.8          |
| 435.40    | 15.000         | 53.1          | 369.21   | 0.900  | 63.6          |
| 430.10    | 12.500         | 53.4          | 367.20   | 0.800  | 64.6          |
| 423.85    | 10.000         | 53.9          | 364.80   | 0.700  | 65.8          |
| 416.05    | 7.500          | 54.4          | 362.24   | 0.600  | 67.2          |
| 410.00    | 1.000          | 04.4          | 359.42   | 0.500  | 69.0          |
|           |                |               |          |        |               |
| 100 50    | 00.000         | •             | Benzoate | 5 000  | F.0. 7        |
| 466.76    | 30.000         | 53.9          | 414.35   | 5.000  | 56.7          |
| 463.77    | 27.500         | 53.9          | 408.89   | 4.000  | 57.4          |
| 460.59    | 25.000         | 54.0          | 402.04   | 3.000  | 58.6          |
| 453.47    | 20.000         | 54.2          | 393.07   | 2.000  | 60.4          |
| 449.29    | 17.500         | 54.4          | 387.14   | 1.500  | 62.0          |
| 444.71    | 15.000         | 54.6          | 379.32   | 1.000  | 64.3          |
| 439.18    | 12.500         | 55.0          | 377.32   | 0.900  | 64.9          |
| 432.80    | 10.000         | 55.3          | 375.27   | 0.800  | 65.6          |
| 424.92    | 7.500          | 55.7          | 370.21   | 0.600  | 67.8          |
|           |                | n-Butyl I     | Benzoate |        |               |
| 474.61    | 30.000         | 54.9          | 416.08   | 4.000  | 59.2          |
| 471.58    | 27.500         | 54.8          | 409.29   | 3.000  | 60.1          |
| 468.42    | 25.000         | 54.9          | 400.12   | 2.000  | 61.7          |
| 464.97    | 22.500         | 54.9          | 394.06   | 1.500  | 63.2          |
| 461.19    | 20.000         | 55.0          | 386.14   | 1.000  | 65.8          |
| 452.11    | 15.000         | 55.7          | 384.21   | 0.900  | 66.6          |
| 446.67    | 12.500         | 56.1          | 382.14   | 0.800  | 67.6          |
| 440.18    | 10.000         | 56.6          | 379.70   | 0.700  | 68.9          |
| 432.16    | 7.500          | 57.4          | 376.98   | 0.600  | 69.3          |
| 421.62    | 5.000          | 58.5          | 374.07   | 0.500  | 70.8          |

<sup>a</sup>Enthalpy of vaporization obtained from the Chebyshev polynomial.

The percent root square deviations of pressure (prms) obtained by using Chebyshev polynomials with 3-10 parameters were estimated as 1.78, 0.30, 0.32, and 0.25 with 3, 4, 5, and 6 parameters, respectively, and 0.24 with 7-10 parameters for

Table III. Constants of Miller and Frost-Kalkwarf **Equations and Chebyshev Polynomial** 

| Chebyshev const     |          | Miller const                              |                              | Frost-Kalkwarf<br>const                                         |          |
|---------------------|----------|-------------------------------------------|------------------------------|-----------------------------------------------------------------|----------|
|                     |          | Me                                        | thyl Benzoate                |                                                                 |          |
| $a_0$               | 426.203  | $A_{\rm m}$                               | -2.44360                     | $A_{\rm f}$                                                     | -24.8763 |
| $a_1$               | 286.834  | B <sub>m</sub>                            | -72.7929                     | $\dot{B_f}$                                                     | 105.6931 |
| $a_2$               | 29.587   | $C_{\rm m}^{\rm m}$                       | $0.537278 \times 10^{-1}$    | $\dot{C_f}$                                                     | 5.46692  |
| $a_3$               | -2.1712  | $D_{\rm m}^{\rm m}$                       | -0.841657 × 10 <sup>-4</sup> | D,                                                              | 13.527   |
| a₄                  | 0.10866  | -                                         |                              | •                                                               |          |
| $a_5$               | 0.26194  |                                           |                              |                                                                 |          |
| prmsª               | 0.25     | $\mathbf{prms}^{\mathfrak{q}}$            | 0.30                         | prms <sup>a</sup>                                               | 0.38     |
|                     |          | Et                                        | hyl Benzoate <sup>b</sup>    |                                                                 |          |
| $a_0$               | 462.309  | A <sub>m</sub>                            | -2.58158                     | $A_{f}$                                                         | -27.2845 |
| a <sub>1</sub>      | 311.396  | B <sub>m</sub>                            | -100.8819                    | B <sub>f</sub>                                                  | 113.8421 |
| $a_2$               | 28.922   | $\tilde{C}_{\rm m}^{\rm m}$               | $0.521035 \times 10^{-1}$    | $\vec{C}_{f}$                                                   | 5.86491  |
| $a_3$               | -2.1414  | $\tilde{D}_{m}^{m}$                       | $-0.762554 \times 10^{-4}$   | $\tilde{D}_{f}$                                                 | -22.121  |
| prmsª               | 0.30     | prms <sup>a</sup>                         | 0.30                         | prms <sup>a</sup>                                               | 0.32     |
| -                   |          | -                                         | ropyl Benzoate               | -                                                               |          |
| $a_0$               | 517.119  | A <sub>m</sub>                            | -0.62873                     | $A_{\rm f}$                                                     | -23.0225 |
| $a_0$               | 344.359  | $B_{\rm m}^{\rm m}$                       | -249.0629                    | $B_{\rm f}$                                                     | -24.1904 |
| $a_1 a_2$           | 25.361   | $\widetilde{C}_{\rm m}^{\rm m}$           | $0.359278 \times 10^{-1}$    | $\begin{array}{c} D_{\mathrm{f}} \\ C_{\mathrm{f}} \end{array}$ | 5.07250  |
| $a_2$<br>$a_3$      | -1.0535  | $\widetilde{D}_{\mathrm{m}}^{\mathrm{m}}$ | $-0.364276 \times 10^{-4}$   | $D_f$                                                           | 110.424  |
| $a_4$               | -0.27131 | $D_{\rm m}$                               | 0.004210 / 10                | $D_{\rm f}$                                                     | 110.424  |
| prms <sup>a</sup>   | 0.21     | prms <sup>a</sup>                         | 0.25                         | prms <sup>a</sup>                                               | 0.32     |
|                     |          | -                                         |                              | <b>F</b>                                                        |          |
| -                   | E CO 100 |                                           | outyl Benzoate               |                                                                 | 00 0000  |
| $a_0$               | 562.122  | A <sub>m</sub>                            | -0.19841                     | $A_{\rm f}$                                                     | -23.3338 |
| a <sub>1</sub>      | 355.074  | $B_{\rm m}$                               | -308.0472                    | $B_{\rm f}$                                                     | -55.8869 |
| $a_2$               | 23.521   | $C_{\rm m}$                               | $0.321218 \times 10^{-1}$    | $C_{f}$                                                         | 5.11238  |
| $a_3$               | -0.7730  | $D_{m}$                                   | $-0.273834 \times 10^{-4}$   | $D_{\rm f}$                                                     | 131.424  |
| $a_4$               | -0.09274 |                                           |                              |                                                                 |          |
| $a_{5}$             | -0.15467 |                                           | 0.10                         |                                                                 | 0.10     |
| prmsª               | 0.14     | prmsª                                     | 0.16                         | prms <sup>a</sup>                                               | 0.18     |
| n-Butyl Benzoate    |          |                                           |                              |                                                                 |          |
| $a_0$               | 567.691  | $A_{\rm m}$                               | -0.10668                     | $A_{\rm f}$                                                     | -23.4476 |
| $a_1$               | 378.352  | B <sub>m</sub>                            | -353.2868                    | B <sub>f</sub>                                                  | -93.6105 |
| $a_2$               | 24.090   | $C_{\rm m}$                               | $0.317416 \times 10^{-1}$    | $C_{\rm f}$                                                     | 5.13256  |
| $a_3$               | -0.8787  | $D_{m}$                                   | $-0.278936 \times 10^{-4}$   | $D_{\rm f}$                                                     | 113.474  |
| $a_4$               | -0.17728 |                                           |                              |                                                                 |          |
| $a_5$               | 0.15110  | -                                         |                              | -                                                               |          |
| $\mathbf{prms}^{a}$ | 0.19     | prmsª                                     | 0.24                         | $prms^a$                                                        | 0.28     |

<sup>a</sup> Percent root mean square deviation defined by  $100(\sum_{i}((P_{expti} - P_{expti}))))$  $P_{\text{caled}}/P_{\text{expt}})_i^2/n)^{1/2}$ . <sup>b</sup> In this case, the Chebyshev polynomial equals the Miller equation.

methyl benzoate. For ethyl benzoate the prms of pressure were 1.45 with 3 parameters, 0.30 with 4-5 parameters, 0.29, 0.28, and 0.27 with 6-8 parameters, respectively, and 0.26 with 9-10 parameters. For n-propyl benzoate the prms of pressure were 0.59 and 0.25 with 3 and 4 parameters, respectively, 0.21 with 5-6 parameters, 0.19 with 7 parameters, and 0.17 with 8-10 parameters. For isobutyl benzoate the prms of pressure were 0.43, 0.16, 0.16, 0.14, and 0.14 with 3-7 parameters, respectively, and 0.12 with 8-10 parameters. For n-butyl benzoate the prms of pressure was 0.45, 0.24, 0.20, 019, 0.19, 0.18, 0.17, and 0.16 with 3-10 parameters, respectively. As listed in Table III, 6, 4, 5, 6, and 6 parameters for methyl, ethyl, n-propyl, isobutyl, and n-butyl benzoates, respectively, were selected to provide satisfactory fitness with relatively few parameters.

The prms of the Miller, Frost-Kalkwarf, and Antoine equations were found to be 0.30, 0.38, and 0.46, respectively, for methyl benzoate; 0.30, 0.32, and 0.38, respectively, for ethyl benzoate; 0.25, 0.32, and 0.79, respectively, for n-propyl benzoate; 0.16, 0.18, and 0.65, respectively, for isobutyl benzoate; and 0.24, 0.28, and 0.71, respectively, for n-butyl benzoate. The constants of the Miller and Frost-Kalkwarf equations are listed in Table III. The Antoine constants were not listed because of the large errors of n-propyl, isobutyl and n-butyl benzoates.

The enthalples of vaporization, which were obtained from the Chebyshev polynomial with constants shown in Table III and the Clausius-Clapeyron relation, have been also presented in Table II. The errors of the enthalples were estimated as  $\pm 0.2$ kJ/mol from the Chebyshev polynomial with higher parameters.

Conversely, the temperatures were calculated from the pressures by using the Miller and Frost-Kalkwarf equations. The mean temperature differences of the Miller and Frost-Kalkwarf equations were taken as 0.06 and 0.07 K, respectively, for methyl benzoate; 0.05 K in both cases for ethyl. benzoate; 0.05 and 0.06 K, respectively, for n-propyl benzoate; 0.04 K in both cases for isobutyl benzoate; and 0.04 and 0.05 K, respectively, for *n*-butyl benzoate. The Miller equation gives a somewhat better correlation than the Frost-Kalkwarf equation.

# Glossarv

| $\Delta H$ | enthalpy of vaporization, kJ/mol          |
|------------|-------------------------------------------|
| Ρ          | pressure, kPa                             |
| Т          | temperature, K                            |
| t          | <i>T</i> – 273.15, K                      |
| Regis      | try No Methyl henzoate 93-58-3; ethyl her |

nyl benzoate, 93-58-3; ethyl benzoate, 93-89-0; n-BTITY NO. ME propyl benzoate, 2315-68-6; n-butyl benzoate, 136-60-7; isobutyl benzoate, 120-50-3.

#### Literature Cited

- Angus, W. R.; Hill, W. K. Trans. Faraday Soc. 1943, 39, 185.
- (2)
- Angus, W. R.; Hill, W. K. Trans. Faraday Soc. **1943**, *39*, 185. Vogel, A. I. J. Chem. Soc. **1948**, 654. Perkin, H. J. Prakt. Chem. **1886**, 69, 1025. Tommila, E. Ann. Acad. Sci. Fenn. Ser. A **1942**, 59, No. 3, 3. Matsuda, S.; Kitsukawa, S. Kogyo Kagaku Zashi (Jpn) **1956**, 59, 895. Katayama, H.; Harada, Y. J. Chem. Eng. Data **1984**, *29*, 373. Kahibaum, G. W. A. Z. Phys. Chem. **1696**, *26*, 609. Hieber, W.; Reindl, E. Z. Elektrochem. **1940**, *46*, 559. Matsuno K.: Man K. Bull. Chem. Soc. Jpn. **1933**, *8*, 323.
- (5)
- (6) (7)

- Matsuno, K.; Han, K. Bull. Chem. Soc. Jpn. 1933, 8, 333.
- (10) Price, C. C.; Belanger, W. J. J. Am. Chem. Soc. 1954, 76, 2682.
  (11) Negoro, K.; Saheki, Y. Kogyo Kagaku Zashi (Jpn.) 1958, 59, 206.
  (12) Kahlbaum, G. W. A. Ber. Disch. Chem. Ges. 1884, 17, 1245.
- Hickman, K.; Weyerts, W. J. Am. Chem. Soc. 1930, 52, 4714.
- Ambrose, D.; Counsell, J. F.; Davenport, A. J. J. Chem. Thermodyn. 1970, 2, 283. (14)
- (15) Miller, D. G. Ind. Eng. Chem. 1984, 56, 46.
   (16) Frost, A. A.; Kalkwart, D. R. J. Chem. Phys. 1953, 21, 264.

Received for review May 12, 1987. Revised manuscript received August 20, 1987. Accepted November 11, 1987.